Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 25, 2026
-
Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection—the most critical atomic operation for interaction—by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption.more » « less
-
Decisions made by domain experts, such as in healthcare and market research, are influenced by the conditional co-occurrence of different events. Learning about conditional co-occurrence is also beneficial for non-experts-the general public. By understanding the co-occurrences of diseases, it is easier to understand which diseases individuals are susceptible to. However, co-occurrence data is often complex. In order for a public understanding of conditional co-occurrence, there needs to be a simpler form to convey such complex information. We introduce an organic visual metaphor, which can provide a summary of the conditional co-occurrences within a large set of items and is accessible to the public with its organic shape. We develop a prototype application offering not only an overview for users to gain insights on how co-occurrence patterns evolve based on user-defined criteria (e.g., how do sex and age affect likelihood), but also functionality to explore the hierarchical data in-depth. We conducted two case studies with this prototype to demonstrate the effectiveness of our design.more » « less
An official website of the United States government
